

A Ballistic Graphene Based Cooper Pair Splitter

P. Pandey^{1,*}, R. Danneau², D. Beckmann²

¹Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany * Current affiliation: Department of Applied Physics, Aalto University, Espoo, Finland ²Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany [†]The presented work is published as: Phys. Rev. Lett. 126, 147701 (2021) DOI: 10.1103/PhysRevLett.126.147701

1. Motivation Reservoir $V_1 = 0$ 1 Reservoir Nonlocal Andreev Controlled Josephson processes [2]. weak link [1]. 2. Device geometry Encapsulated graphene Al₂O₃ Self-aligned 1D Top h-BN edge contacts Bottom h-BN SiO₂ 3. Normal state characterisation SGS — NGN CNP (SGS)

Formation of potential

barriers.

 $V_{q}(V)$

4. Cooper pair splitting: Experiment and modelling

- > Local transport processes (solid lines).
- Nonlocal transport processes (dashed lines) through the beam splitter.

5. Summary and Outlook

- > Observation of the CPS features in a ballistic graphene device.
- > Explanation of the observed features with a 3-terminal beam splitter model.
- > Possibility of employing bilayer graphene and additional gates for designing further controlled entanglement measurements.

6. References

 $SGS (V_{bias} = 0)$

- [1] J. J. A. Baselmans et al., Nature 397, 43 (1999).
- [2] M. P. Nowak et al., Phys. Rev. B 99, 075416 (2019).
- [3] G. E. Blonder et al., Phys. Rev. B 25, 4515 (1982).
- [4] A. A. Golubov and M. Y. Kupriyanov, JETP Lett. 61, 851 (1995).
- [5] F. Pérez-Willard et al., Phys. Rev. B 69, 140502 (R), (2004).
- [6] M. Octavio et al., Phys. Rev. B 27, 6739, (1983).