

QCD Labs



# **V. Vadimov** $^{1,2,3}$ , T. Hyart $^{4,5}$ , J. Lado $^4$ , M. Möttönen $^{1,6}$ , T. Ala-Nissilä $^{2,7}$

<sup>1</sup>QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500,FI-00076 Aalto, Espoo, Finland Physics Group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105, Russia Physics, Aalto University, FI-00076 Aalto, Espoo, Finland

<sup>5</sup>International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland <sup>6</sup>VTT Technical Research Centre of Finland Ltd., QTF Center of Excellence, P.O. Box 1000, FI-02044 VTT, Finland <sup>7</sup>Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK

7 June 2021

### Introduction

Topological superconductors represent one of the key hosts of Majorana-based topological quantum computing. Typical scenarios for one-dimensional topological superconductivity assume a broken gauge symmetry associated to a superconducting state. In this work, we demonstrate that robust zero modes appear in a 1D many-body model without gauge symmetry breaking. The model we focus on would give rise to a topological superconductor at the mean-field level if the gauge symmetry were explicitly broken. We demonstrate that no such gauge symmetry breaking is required for the emergence of Majorana-like zero modes, establishing a peculiar paradigm of quantum many-body excitations with no single-particle analog. Despite their fundamental differences to Majorana zero modes, we demonstrate that these two types of many-body excitations share many properties, including robustness to perturbations and disorder.

### Kitaev model

Kitaev model is a chain of spinless fermions with p-wave superconducting pairing between the neighboring sites:

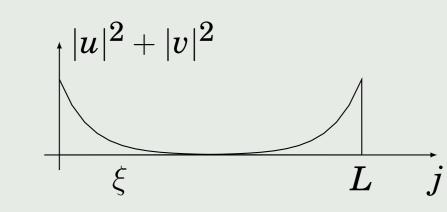
$$\hat{H}_K = -t\sum_{j=1}^{L-1} \left(\hat{a}_{j+1}^\dagger \hat{a}_j + \hat{a}_j^\dagger \hat{a}_{j+1}\right) + \Delta \sum_{j=1}^{L-1} \left(\hat{a}_{j+1}^\dagger \hat{a}_j^\dagger + \hat{a}_j \hat{a}_{j+1}\right) - \mu \sum_{j=1}^{L} \hat{a}_j^\dagger \hat{a}_j$$

This Hamiltonian can be diagonalized by a linear Bogoliubov transformation:

$$\hat{a}_j = \sum_{k} \left( u_{jk} \hat{c}_k + v_{jk}^* \hat{c}_k^\dagger 
ight), \; \hat{a}_j^\dagger = \sum_{k} \left( v_{jk} \hat{c}_k^\dagger + u_{jk}^* \hat{c}_k 
ight), \quad \hat{H}_K = arepsilon_0 \hat{c}_0^\dagger \hat{c}_0 + \sum_{j=1}^{L-1} arepsilon_k \hat{c}_k^\dagger \hat{c}_k + const$$

 $arepsilon_0 \propto \Delta e^{-L/\xi}$  ,  $arepsilon_k > \Delta$  (k>1)

One could use the states  $|\Psi_{f 0}
angle$  and  $\hat{c}_{f 0}^{\dagger}|\Psi_{f 0}
angle$  as a qubit!



A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi 44, 131–136 (2001).

# Experimental implementations

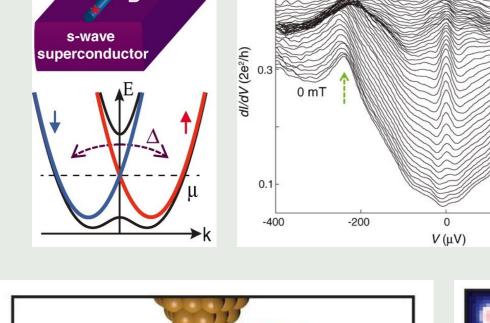
- One-dimensional channel
- Rashba spin-orbit coupling
- Strong Zeeman field
- $\blacksquare$  s-wave superconductivity

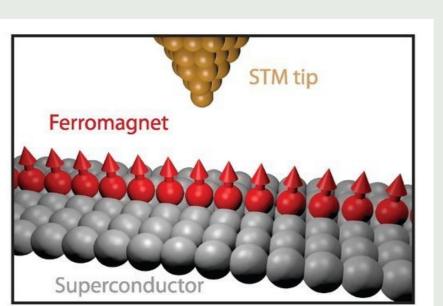
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, *Science* **336**, 1003

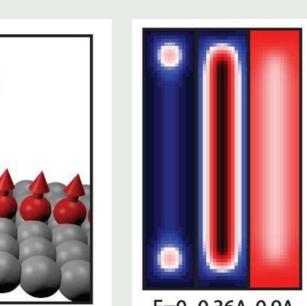
(2012).

 Chain of magnetic atoms on a superconductor surface
 Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J.

Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani,







Peak splitting

A mean field superconductivity is required for all these realizations. But is it possible to have Majoranas without gauge symmetry breaking?

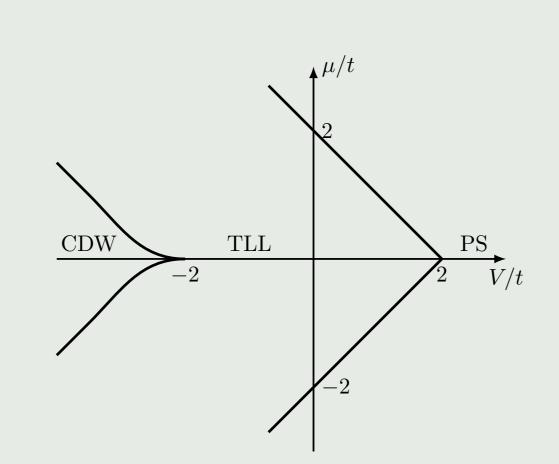
## Interacting model

We consider Kitaev model and replace superconducting pairing term with an attractive interaction between the neighboring sites. Treated within a mean-field approximation such interaction gives rise to *p*-wave superconductivity.

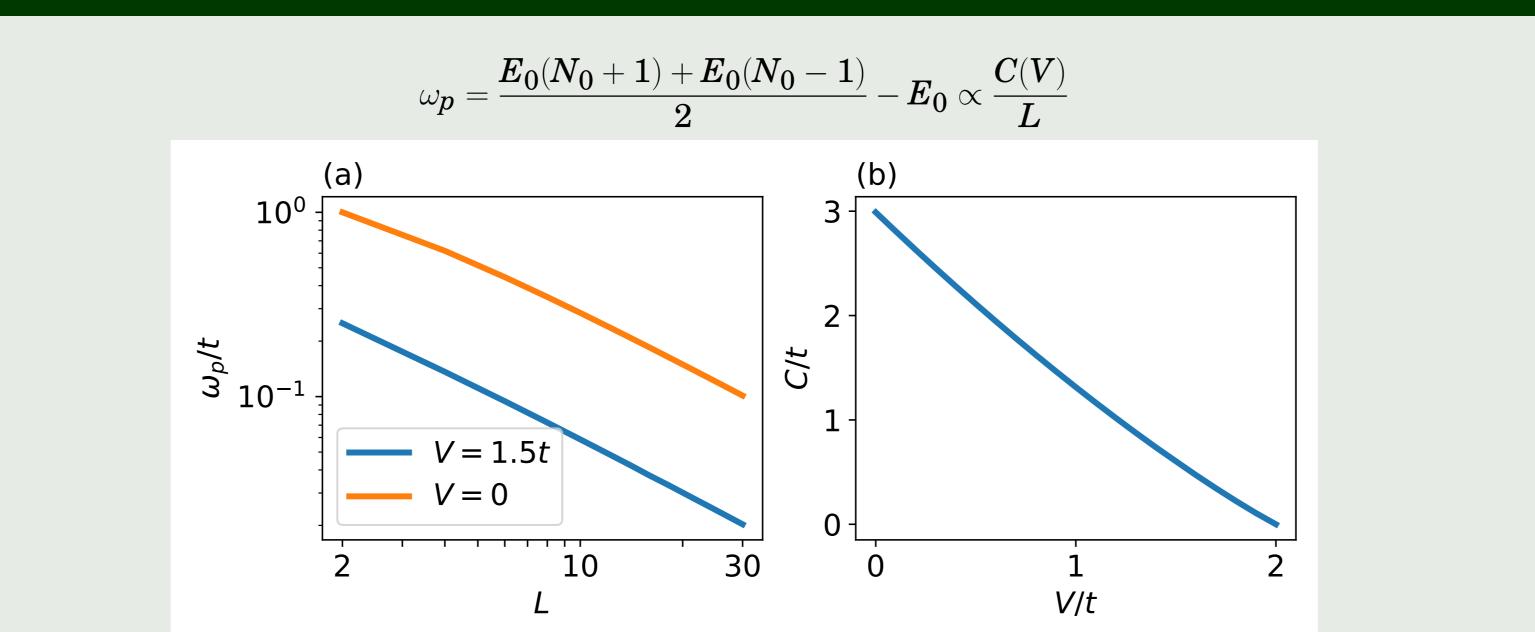
$$\hat{H}_{I} = -t\sum_{j=1}^{L-1} \left(\hat{a}_{j+1}^{\dagger}\hat{a}_{j} + \hat{a}_{j}^{\dagger}\hat{a}_{j+1}
ight) - V\sum_{j=1}^{L-1} \left(\hat{a}_{j+1}^{\dagger}\hat{a}_{j+1} - rac{1}{2}
ight) \left(\hat{a}_{j}^{\dagger}\hat{a}_{j} - rac{1}{2}
ight) - \mu\sum_{j=1}^{L} \hat{a}_{j}^{\dagger}\hat{a}_{j}$$

### Properties of model:

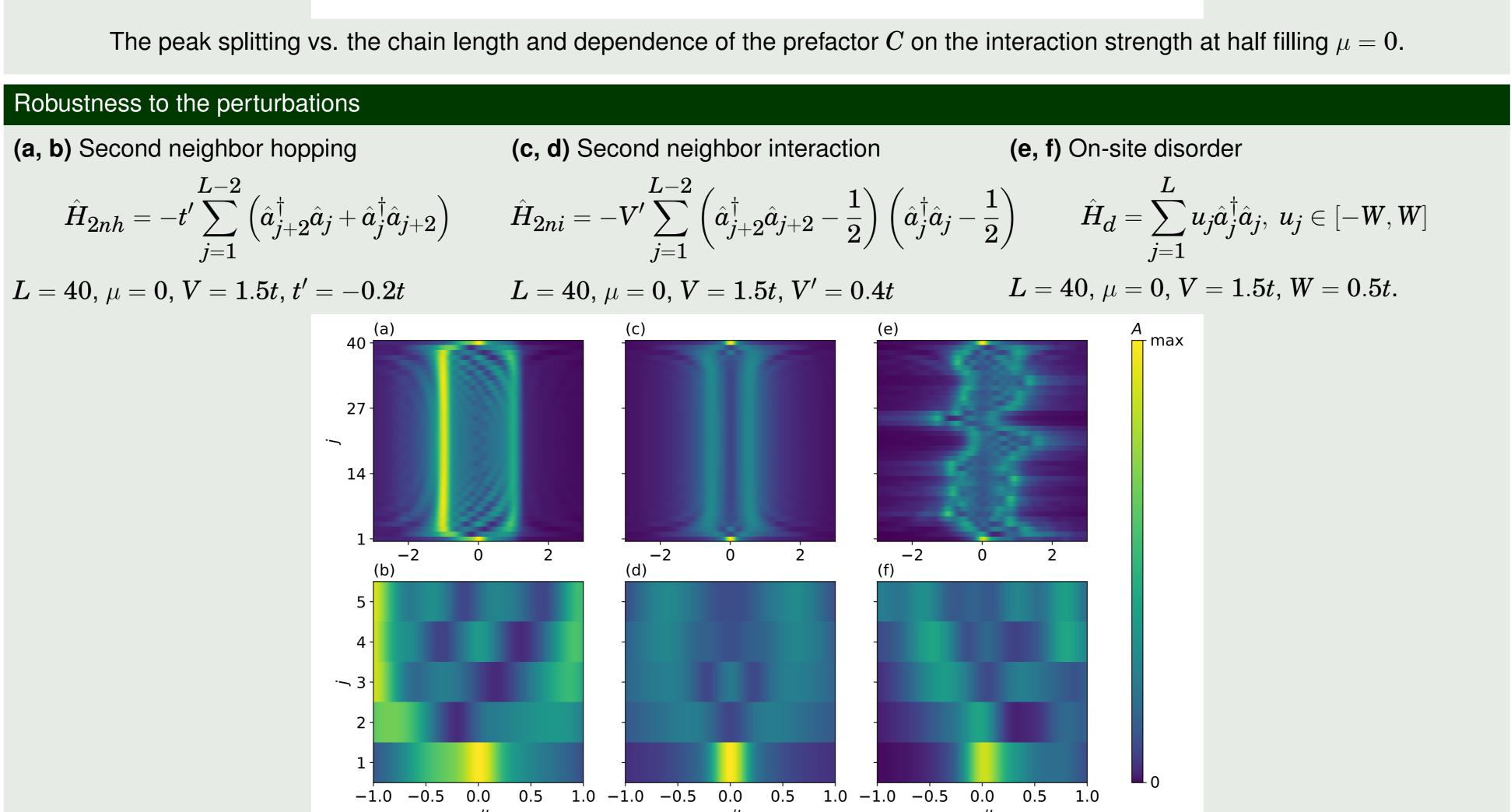
- Gauge invariant
- Bethe-ansatz integrable
- Yields Kitaev model in a mean field approximation
- Has three phases: phase separation (PS), Tomonaga—Luttinger liquid (TLL), and charge density wave (CDW)
- Gapless in the TLL phase



# $A(j,\omega) = \langle \Psi_0 | \hat{a}_j \delta(\omega - \hat{H} + E_0) \hat{a}_j^{\dagger} + \hat{a}_j^{\dagger} \delta(\omega + \hat{H} - E_0) \hat{a}_j | \Psi_0 \rangle = \sum_m \left[ |\langle \Psi_0 | \hat{a}_j | \Psi_m \rangle|^2 \delta(\omega - E_m + E_0) + \langle \Psi_0 | \hat{a}_j^{\dagger} | \Psi_m \rangle|^2 \delta(\omega - E_0 + E_m) \right]$

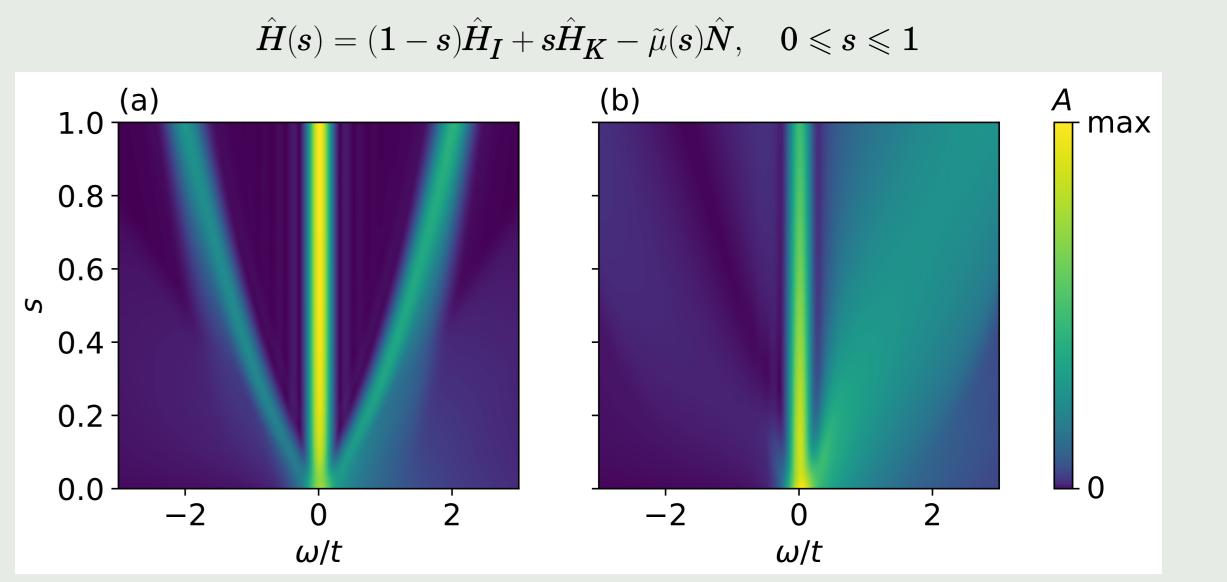


(a, b)  $L=10,\,\mu=0,\,V=1.5t$  (c, d)  $L=40,\,\mu=0,\,V=1.5t$  (e, f)  $L=40,\,\mu=-0.2t,\,V=1.5t$ 



# Connection to a topological superconductor

# Parametric Hamiltonian

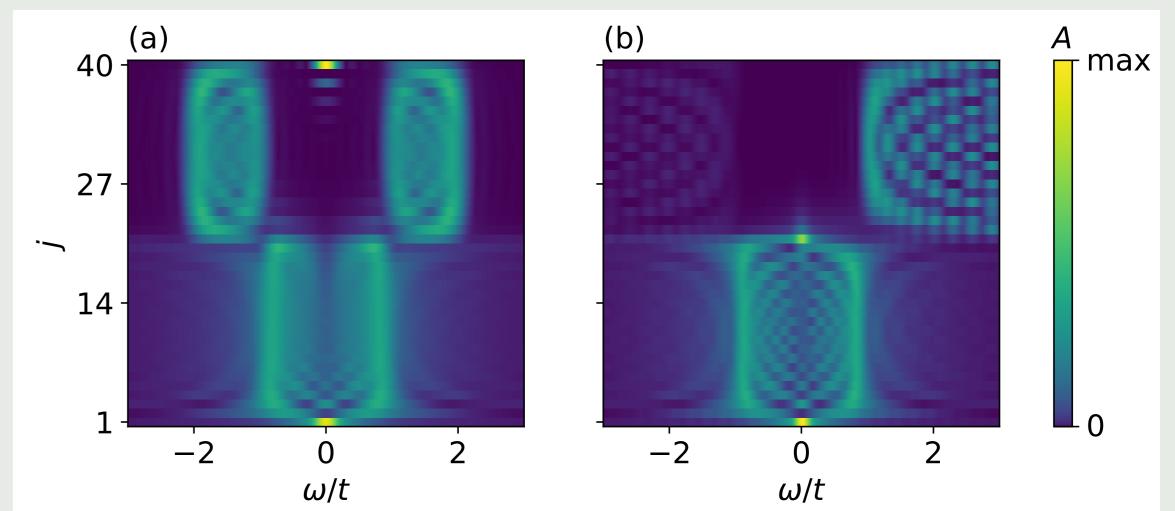


Local density of states at the first site (a) L=40, V=1.5t,  $\Delta=t$ ,  $\mu=-0.2t$ ,  $\tilde{\mu}=0$  (b) L=40, V=1.5t,  $\Delta=t$ ,  $\mu=-0.2t$ ,  $\langle \hat{N} \rangle=L/4$ 

### Interface between the interacting model and the topological superconductor

$$\hat{H} = -t \sum_{j=1}^{L-1} \left( \hat{a}_{j+1}^{\dagger} \hat{a}_j + \hat{a}_j^{\dagger} \hat{a}_{j+1} \right) - V \sum_{j=1}^{L'-1} \left( \hat{a}_{j+1}^{\dagger} \hat{a}_{j+1} - \frac{1}{2} \right) \left( \hat{a}_j^{\dagger} \hat{a}_j - \frac{1}{2} \right) + \Delta \sum_{j=L'}^{L-1} \left( \hat{a}_{j+1}^{\dagger} \hat{a}_j^{\dagger} + \hat{a}_j \hat{a}_{j+1} \right) - \mu \sum_{j=1}^{L'} \hat{a}_j^{\dagger} \hat{a}_j - \mu' \sum_{j=L'+1}^{L} \hat{a}_j^{\dagger} \hat{a}_j$$

$$40 \frac{\text{(a)}}{\text{max}}$$



Density of states for all sites for the interface with topological superconductor (a)  $L=40, L'=20, V=1.5t, \Delta=0.5t, \mu=0, \mu'=0$  (b)  $L=40, L'=20, V=1.5t, \Delta=0.5t, \mu=0, \mu'=3t$ 

### Continuous limit

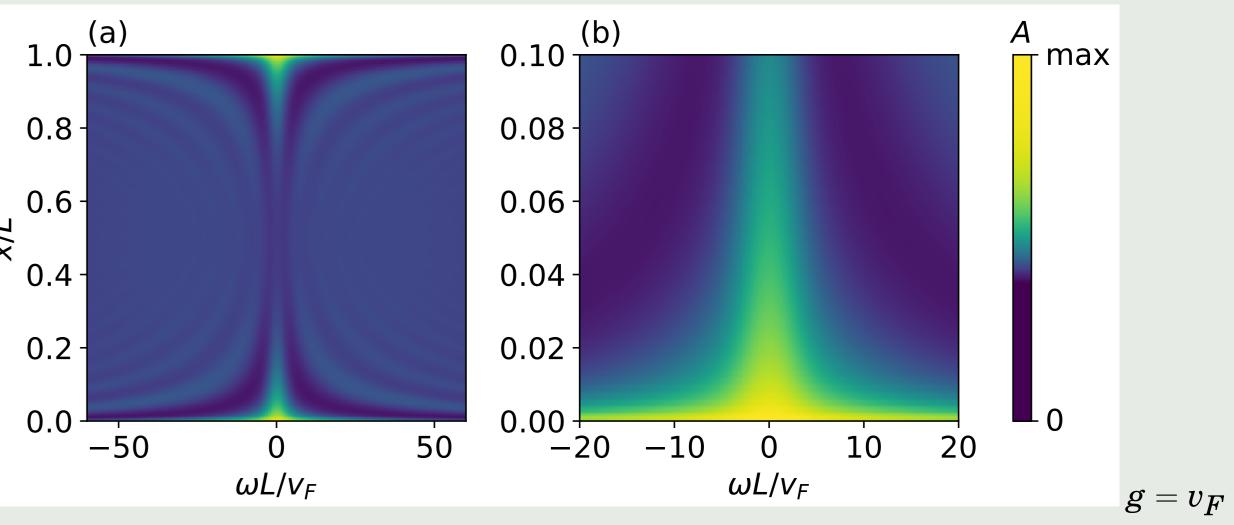
### **Continuous wire**

$$\hat{H}_c = \int\limits_0^L \left\{ \hat{\psi}^\dagger \left( -rac{\partial_x^2}{2m} - rac{k_F^2}{2m} 
ight) \hat{\psi} + rac{\mathcal{g}}{8k_F^2} : [\partial_x \hat{
ho}]^2 : 
ight\} \; \mathrm{d}x, \quad \hat{\psi}(0) = \hat{\psi}(L) = 0$$

# **Spectral function**

$$m{A}(m{x},\omega) = i \int\limits_{-\infty}^{+\infty} \left[ m{G}^{>}(m{x},m{x},t) - m{G}^{<}(m{x},m{x},t) 
ight] e^{m{i}\omega t} \; \mathrm{d}t$$





# Conclusions

We have demonstrated the emergence of robust Majorana-like edge modes in the many-body quantum system without mean-field superconductivity.

arXiv:2011.06552, Accepted for publishing in Phys. Rev. Research.